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Abstract 

Recent derivations of probability expressions for 
quartet and quintet structure invariants allow the 
reliable estimation of the phase sums of quartets and 
quintets in the range 0 to zt. A new quartet figure of 
merit, ENQUAC and a new quintet figure of merit, 
ENQUIC, based on these estimates are described, 
which are particularly useful in non-centrosymmetric 
symmorphic and polar space groups. An adapted 
tangent-refinement procedure employing selected trip- 
lets with a phase sum of 0, together with the quartet 
and quintet phase estimates, enables enantiomorph- 
specific phase refinement. The way in which the figures 
of merit and the refinement technique can be used in 
various practical procedures is demonstrated and 
applications to two structures in space group P1 are 
presented. 

Introduction 

Although more and more structures of moderate 
complexity (60 to 80 independent atoms) are solved by 
direct methods, in non-centrosymmetric symmorphic 
and polar space groups, the application of the triplet 
relation fails for numerous structures: parts of the 
phase determination, which are easy to carry out in 
other space groups, give rise to serious problems, such 
as: 

(i) The enantiomorph definition; in the space groups 
P1, P2, P2~, C2 and Cc it is a difficult procedure, 
because it is not possible to select a starting reflection, 
which is enantiomorph-sensitive (~  ~ _ zc/2). 

(ii) The tangent refinement; occasionally the 
resulting phases are centrosymmetric, even starting 
with a correct phase set. 
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(iii) The various figures of merit, based on triplets; 
they do not discriminate as consistently between 
correct and incorrect phase sets as they do in non- 
symmorphic and non-polar space groups. Some of 
these difficulties have been dealt with by Schenk 
(1972), who indicated that they can be ascribed to the 
influence of the space group symmetry and the 
properties of the Y2 relation. 

These problems do not exist if the actual values of 
the phase sums, 

(1)3 : (~ H "~ (1) K "[- ~ - H -  K ' (1) 

could be used instead of assuming all ~3 to be zero. Of 
course the q~3 values cannot be evaluated from IEq 
magnitudes alone, and in practice only r~J  values can 
be calculated, of which the quality is not yet sufficiently 
good to define reliable enantiomorph-specific pro- 
cedures (e.g. B3. 0 formula, Karle & Hauptman, 1958; 
TPROD formula, Hauptman, Fischer, Hancock & 
Norton, 1969; MDKS formula, Fischer, Hancock & 
Hauptman, 1970; and the strengthened triplet formula, 
Giacovazzo, 1977). 

Test results of recent expressions for quartets and 
quintets proved that the absolute values I~b41 and 1~51 
of their phase sums, 

~4 = q~n + q~K + q~L + q~-n-x-L (2) 
and 

q'5 = ~,,  + ¢',, + q'L + q'~, + q ' - , , - , , - , - M ,  (3) 

can be estimated with the required accuracy for 
enantiomorph-specific procedures. Most of these results 
are described in papers by Hauptman (1975), van der 
Putten & Schenk (1976), Schenk & van der Putten 
(1977), van der Putten & Schenk (1977) and Gilmore 
(1977). More evidence will be given in this paper. 

The main problem left when applying estimated 
phase sums in structure determination arises from the 
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382 QUARTET AND QUINTET INVARIANTS IN PHASE DETERMINATION 

fact that only the absolute values of ~4 and ~5 can be 
estimated. The choice between - I  cP41 and + I q~41 has to 
be made in the practical application itself and the same 
applies to - I  ~P51 and + I cPsI. How this is achieved in 
the enantiomorph-specific figures of merit ENQUAC 
(based on quartets) and ENQUIC (based on quintets) 
and in an enantiomorph-specific refinement procedure 
is the main subject of this paper. Finally, the role of 
these procedures in phase determination will be dis- 
cussed and illustrated. 

Estimates of quartet phase sums I ~41 

Hauptman (1975) has derived a probability expression 
to estimate the phase s u m  Irma1 of a quartet structure 
invariant given the E magnitudes of the reflections H, 
K, L and H + K + L and those of the three cross- 
reflections H + K, H + L, K + L: 

P(IIT)=P($41tEz.zl, IGI,  IELI, IEH+K+LI, IE,+xl, 

[EH+LI, IEx+LI) 

= c exp (--4E4 c o s  (~4)H Io(2N-Z/ZlEn +xl Y,  +x) 
3 

(4) 
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Fig. 1. Graph of 1~4(true)l against l(2D4(pred)l in millicycles (1000 
millicycles = 2n) predicted with (4) for 825 quartets of a 30 
atom structure. The number of quartets with the same It~4(true) l 
and 1~4(pred)l are represented by capital letters: A means 1, 
B 2, C 3 etc. 

in which E4 = N-~IEnEKELEn+x+~I, c is a suitable 
2 2 2 2 normalizing constant, Yn+x = (EnEK + ELEn+x+L + 

21En EK EL En +x +L L cos ~4) 1/2. This distribution gives 
maxima (modes) within the range 0 < 1(/)41 <_ It. It has 
been applied to two structures in space group P1. 

For a 30 atom structure (Kanters & Van Veen, 
1973) 825 quartets were calculated from the 200 
strongest reflections down to a limit E4 = 0.7. In Fig. 1 
the mode of the phase sums 1~41 predicted by (4) are 
plotted against the true phase sums 1(/)41. The overall 
dif ference  (II t~4pred [ --  [ t~4 tru e l[ > is 73 mi l l icyc les .  

In Fig. 2 a similar plot is given for 940 quartets 
which have been calculated within the group of the 500 
strongest idealized E magnitudes of a 44 atom 
structure (Mairesse & Dracke, 1978), down to a limit 
value of E4 = 0.7. For these quartets the mean 
di f ference  <ll~4predl - -  I tJt~4truel 1) = 78 mi l l icyc les .  
More test results can be found in Schenk (1976) and 
Gilmore (1977). On the basis of this material and 
extensive tests on randomly generated structures (van 
der Putten, 1978) we could conclude that P(117) is not 
reliable for small structures (N smaller than approxi- 
mately 10) and large ones (N larger than approxi- 
mately 200). For small structures the modes of P(lJ7) 
are for the greater part wrongly found in the range It/3 
< I (])41 _< It and for large structures there is a tendency 
for very broad distributions with mode I (/)41 = 0. 
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Fig. 2. Graph of [(i~4(true )] against 1~)4(pred)l predicted with (4) for 
940 quartets of a 44 atom structure. 
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Figs. 1 and 2 show tha t  the number of predicted 
phase sums of 0 and n is overdetermined, which will 
cause problems in the applications, because estimates 
of 0 and n do not discriminate between the enantio- 
morphs. On the other hand the 1041 values with modes 
other than 0 or n are reliably estimated but are too few 
in number. Therefore the following IO41 estimates are 
used in our enantiomorph-specific procedures: 

I O 4 lused : II O 4 Imode -- a o  I (5) 

in which 

a = 0 for  0 <: [ O41mode <~ 7[ 

and a = 0.33 for 10 41 mode - ' ~  0 or 7[, 

and a is the standard deviation given by 

(0: t t r =  ( 1 0 4 t -  I 0 4 1 m o d e ) 2 p ( l l 7 ) d 0 4  . (6) 

Experiments with enantiomorph-specific procedures 
which will be described in the sequel showed that the 
estimates from (5) give better results than modes 
(suggested by Gilmore, 1977) or means (suggested by 
Hauptman, 1978 and Gilmore, 1978). 

a relative scale it is necessary to use instead of (7) the 
related criterion: 

ENQUAC = E WtIO. + Ox + O L + O_n_r_ ,  
l 

+ s, lo,  II/Z w,, (8) 
which enables an easy comparison of the ENQUAC 
values. In the second case the • n, • K, O~ and 
O_H_K_L are expressed in the symbols Xj and thus the 
figure of merit (7) can be rewritten as: 

E N Q U A C  ( X , , X 2 , ' " , X , , )  = ~. W,I~. Aij X j  
t J 

Then for sets of numerical values of 
figure of merit can be evaluated. 
necessary. 

4" Sl] 0 411. (9) 

Xj the ENQUAC 
Rescaling is not 

Starting from a set of parameter values in (9) it is 
possible to use an iterative least-squares procedure to 
refine the Xj values. The function to be minimized is: 

R ( X j ) :  Z WtIZ AljXj + S/I °4112. (10) 
t l 

The negative-quartet criterion NEGQAC 

Enantiomorph-specific figure of merit ENQUAC 

On the basis of the estimates of the phase s u m s  IO41 
described in the previous section an enantiomorph- 
specific figure of merit ENQUAC can be formulated: 

ENQUAC = E WIIO. + Or + O, + O_n_r_ ,  
i 

+ Sll • 4 I1, (7) 

in which OH, • K, • L and O_ H_K_L are determined in a 
direct phasing procedure, W t = o - '  with o defined by 
(6) and S l = + 1 to be chosen such that • H + • r + 0 ,  
+ O-H-K-L + all O41 is nearest to zero. 

If the phasing procedure gives the correct values for 
OH, Or, # ,  and O_H_K_, and if the IO41 estimation 
gives a correct value for IO41, the resulting ENQUAC 
criterion will be equal to zero. The nearest centro- 
symmetric phases for • H, etc. give rise to a much 
higher ENQUAC value. It follows that ENQUAC 
should be enantiomorph-specific. In practice the values 
of • H, OK, O L and O_n_x_ L and IO41 are afflicted 
with errors. However, as long as the errors are more 
random than systematic, the ENQUAC criterion will 
still be enantiomorph-specific and it is expected that the 
smallest ENQUAC value corresponds to the set of 
correct phases of the structure. 

The ENQUAC figure of merit can be used in both 
multisolution tangent refinement and symbolic addition 
procedures. In the first procedure for each solution an 
ENQUAC value can be calculated. To bring these onto 

In recent years several proposals have been made for a 
figure of merit based on negative quartets: 

o , ,  + OK + o ,  + o _ . _ , , _ !  ~ 7[, 
for large E 4 and small IEH+K I, IEH+zl and IEK+rl. On 
the basis of the first formulation of this phase relation 
(Hauptman, 1974), Schenk (1974) formulated a 
negative-quartet criterion as: 

NQC = E I4:/I On + Ox + O~ + O_H_K_ L - 7[I, 
l (11) 

in which 

Wl=  E4(2 .7 - -  IEH+KI- I E H + , I -  IEK+LI) 
and , (12) 

WI=E4(I.0--IEH+KI- IEn+~ I ) 

for quartets with three and two known cross-reflections 
respectively. 

On the basis of a theory of Giacovazzo (1975), 
Schenk (1975) reformulated the weights (12): 

Wt=E4(2--IEH+K 12- }EH+L 12- IEK+LI2)) 
and / '  (13) 

W l = E4 (1 -- IEH+K 12- IEx+~ 12) 

for quartets with three and two known cross-reflections 
respectively. 

DeTitta, Edmonds, Langs & Hauptman (1975) 
later published the NQEST criterion: 

NQEST = ~ E 4 1 0  H + • g + 0~ + O_H_K_~I/~ E4, 
1 

(14) 

with the summation over the negative quartets. 
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These negative quartets are selected by strict thresh- 
holds for all seven magnitudes involved. All negative 
quartets accepted in the summation have a weight 
exclusively determined by the value of E4 and inde- 
pendent of the values of IEH+K[, IEH+L[ and IEK+'-[. 
In spite of the criticism of DeTitta, Edmonds, Langs 
& Hauptman (1975) on the negative-quartet criterion 
NQC the incorporation of weights based on all seven 
magnitudes involved gives rise to better results. A 
further improvement of figures of merit based on 
negative quartets will involve the use of the estimated 
1(/,41 values. This figure of merit can be written as: 

N E G Q A C  ---- Y. Wilto n + toK + to,. 
l 

+ to -H-K-L  + Sit to411 , (15) 

in which Si(= + 1) is chosen such that ton + O~ + to'- + 
to-H-K-'- + Silto41 is closest to zero and the sum- 
mation is restricted to those quartets which are 
predicted to be negative (e.g. I to41 > 0 ° 7 7 0 .  Since it 
can be seen from the tests that the I to41 values are 
estimated with a random error, N E G Q A C  is expected 
to be a better criterion than NQC and NQEST. 

N E G Q A C  is calculated with a selection of the 
terms included in ENQUAC.  Since our experiences 
with related figures of merit indicate that the more 
terms that are included the more reliable the figure of 
merit will be, we expect E N Q U A C  to be more 
selective than N E G Q A C .  

E 5 =  N-3/21EHEKELEMEH+K+L+M I , 

= E~(E~ + M  "[- E~+K +M + EH+K+L- 2)2 YH+K { 4 - ' E  2 2 2 2 2 

+ IEHEKE, EMEH+K+'-+MI(E~+M 
2 2 - 2)cos • 5 + Ett+K+M + EH+K+L 

+ b 7 2 b  "2 b72  +M }1/2 
~"L ~"M ~"H +K +L 

This expression also gives modes in the range 0 < 
I tosI < n. The first test results (van der Putten & 
Schenk, 1977; Gilmore, 1978) showed good agree- 
ment between the estimated and the true phase sums 
I tosI and the first authors concluded that the I tosI 
estimates could be used in enantiomorph-specific pro- 
cedures. Although the I to51 estimates have somewhat 
larger variances than the 1(/)41 estimates, the fact that a 
much larger fraction of the quintets is enantiomorph- 
sensitive will compensate for this. For the same reasons 
as for the quartets the t tosI the values used in most of 
the practical procedures are given by: 

I to5 I,,sed = 11 to5 Imode - -  aol, (17) 
in which 

(0: O =  (Ito51_ IOsImode)2p(ll15)dto5 2, (18) 

a = 0 for 0 < I to51mode < 7t 

and a = 0.33 for I to5 I mode -- 0 or ~. 

Estimates of quintet phase sums 1051 

On the basis of the exponential probability expression 
for quintet phase sums (3) (Hauptman & Fortier, 
1977), van der Putten & Schenk (1977) derived a 
probability expression in the exponential Bessel 
function form given the E magnitudes of the five main 
reflections H, K, L, M and H + K + L + M and those 
of the ten cross-reflections H + K, H + L, H + M, 
K + L + M , K  + L , K  + M , H  + L + M , L  + M, 
H + K + M a n d H  + K + L: 

 (1,15, Cexp((6 10,=    +K)2 5oosOs} 

x I-I Io (2N-a /41EH+KIYH+K)  , (16) 
IO t e r m s  

in which C'  is a suitable normalizing constant, 

Y. EL = + EL,  +... + E' H+K+L' 
10 t e r m s  

Enantiomorph-speeifie figure of merit ENQUIC 

In analogy with the quartet criterion E N Q U A C  we 
define an enantiomorph-specific figure of merit 
ENQUIC:  

ENQUIC = E W i l t  OH + toK + toL + tom 
l 

+ to-H-K-K-M + Sil q)5 I[, (19) 

in which htos[ is the estimated phase sum, W i = 0 -1 ,  

a = the standard deviation defined by (18), S i = + 1 to 
be chosen such that ton + to~ + toL + tom + 
to-H-r-L-M + Sil to51 is closest to zero. 

An identical reasoning as for E N Q U A C  shows that 
ENQUIC is enantiomorphic-specific. The figure of 
merit can be used in the same way in multisolution 
tangent refinement and symbolic addition. In the last 
case the phase sum toH + toK + to'- + tom + 
to-U-r- ' - -M is expressed in the symbols Xj  and 
thus the figure of merit (19) can be rewritten as: 

E N Q U I C ( X , , X 2 , . . . , X , , ) =  ~. W i l e  A u X j  + Sil tosl I. 
i j 

(20) 
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For sets of numerical values of Xj the ENQUIC figure 
of merit can then be evaluated. The sets of Xj values 
with lowest ENQUIC may be refined by iterative least 
squares. The function to be minimized is: 

R(XA=Y W~IYAijXj+ S,10,1I ~. (21) 
1 j 

Enantiomorph-specific phase extension and refinement 

It is also possible to use the estimated IO41 and I O51 
values in an enantiomorph-specific phase extension and 
refinement procedure. Initially we developed separate 
procedures for quartets and quintets, but in the end a 
method using the complete set of quartets and quintets, 
combined with those triplets estimated to be reliably 
near zero (O s = 0), proved to be most successful. The 
procedure consists of two parts, the phase extension 
and the phase refinement. The extension part employs 
the strongest triplets (O s = 0) and the positive and 
negative quartets and quintets only (I O41mode : 0 ,  7[; 
I O5 mode = 0, 7t). The new phases are calculated by 
means of a variant of the usual tangent formula: 

stri + squa + squi 
tan • u = (22) 

ctri + cqua + cqui ' 

with 

stri = ~ W a sin (O x + OH_X), 
K 

s q u a =  Y Y W4sin (O x + O x + OH_X_ t + [ O4lmode), 
K L 

squ i=  Z E E W s s i n ( O  K + O  t + O M + O z _ x _ L _  M 
~ t M  

+ I OSImode) ,  

and corresponding expressions for the cosine terms in 
the denominator. 

Then the complete set of known phases is refined 
with an adapted form of the above tangent formula 
employing the strongest triplets and all quartets and 
quintets: 

sintri + sinqua + sinqui 
tan • u = , (23) 

costri + cosqua + cosqui 
with 

and corresponding expressions for costri, cosqua and 
cosqui. In this expression the Wi's are proportional to 
the reciprocal standard deviations of the respective 
structure invariants, 1 041 and I ~51 are given by (5) and 
(17) respectively, and $4(+1) and $5(+1 ) are chosen 
such that - O  n + • r + • L + On_x_  L + S4l O41 and 
- 0 .  + o x  + 0 ,  + % + % - K - , - M  + SsIO, I 
respectively are closest to zero. As a result of the use of 
the IO41 and IO51 values this adapted tangent refine- 
ment is able to maintain the enantiomorph. The use of 
the triplets does not affect this property, because the 
triplets are selected such that only small deviations 
from • 3 = 0 are included in the calculations. The 
quartet and quintet parts of (23) are related to the 
tangent procedure of Sint & Schenk (1975), which 
proved successful for phase refinement in large mole- 
cules with large sets of starting phases. Lessinger (1976) 
described possible future strategies for M U L T A N .  He 
found that application of the normal tangent formula 
drives the true phases to values which make the triplet 
relationships among the largest E values very con- 
sistent and the invariants much more narrowly distribu- 
ted about zero than they in fact are. Therefore he 
proposed an extended tangent formula containing 
triplets and quartets, in particular the negative quartets. 
The reason for the use of the negative quartets was that 
these invariants would change the relations which the 
phase of the largest E values must satisfy and would 
constrain the phase development. Our results suggest 
that the use of triplets, quartets and quintets together 
with their estimated phase sum gives a better clue to 
this problem than the procedure proposed by Lessinger. 
The main reasons for this are: 

(i) There is great abundance of quartets and in 
particular of quintets within the group of reflections 
with the largest E values. However, the number of 
negative quartets within that group is very small. 

(ii) A large number of the phase sums of quartets and 
quintets may be estimated reliably. This excess of 
information enables a rigorous selection of triplets, 
quartets and quintets in order to maintain the enantio- 
morph-specific properties of the refinement procedure. 

Of course the method has the limitation that it is not 
suitable for very large structures, because the reliability 
of their estimated phase sums and especially of their 
enantiomorph-sensitive phase sums is too low. 

sintri = ~ W 3 sin (O K + OH_K), 
K 

sinqua = X Y  W 4 s i n ( O x  + Or+ O Z - X - L  + $41041), 
K L 

sinqui = X X Y Wssin (Or + Ot + Ou + O.-K-L-M 
K L M  

+ Ssl Osl), 

ENQUAC, ENQUIC and the enantiomorph-specifie 
refinement in the symbolic addition program system 

S I M P E L  

The enantiomorph-specific procedures can be easily 
incorporated in the interactive direct methods program 
system S I M P E L  (Overbeek, van der Putten, Olthof & 
Schenk, 1977). S I M P E L  has a modular structure, in 
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which the major routines are: generation of (sem-) 
invariants, setting up the starting set, phase extension, 
evaluation of figures of merit and calculation of the E 
map and its interpretation. For difficult structures in 
polar space groups we have adopted the following 
enantiomorph-specific SIMPEL scheme: 

(1) Calculate triplets, quartets and quintets within the 
group of the strongest unique reflections (8n, with n the 
number of atoms in the asymmetric unit). 

(2) Define the origin and give symbols by means of a 
convergence procedure analogous to that in MULTAN 
(Germain, Main & Woolfson, 1971)using triplets and 
extreme quartets involving the strongest reflections 
(e.g. approximately 40). 

(3) Extend this small starting set by means of the 
strongest triplets (1¢~31 _ 0) and, if necessary, by 
means of positive and negative quartets and quintets in 
an iterative procedure using very strict acceptance 
criteria. 

(4) Calculate ENQUAC with the group of the most 
reliable quartets for numerical values of the symbols 
(e.g. 0, zt/2, zr, 3~z/2). The correct symbol combination, 
in view of (9), is expected to give the lowest ENQUAC 
value. 

(5) Refine the numerical values for the symbols, 
correspo~ading to the lowest ENQUAC values, by 
means of the iterative least-squares method (10). 

(6) Calculate ENQUIC with the group of the most 
reliable quintets only, taking for every symbol numeri- 
cal values. 

(7) Refine the symbol combinations which give the 
lowest ENQUIC values by means of the least-squares 
method (21). 

(8) Choose the best solutions from steps 5 and 7 on 
the basis of (10) and (21). Substitute the phases thus 
obtained for the symbolic phases in the small starting 
set, which has been generated in step 2. Extend this 
small starting set and refine the phases with the 
enantiomorph-specific refinement procedure described 
in the previous section. 

(9) Calculate and interpret E maps. 

Applications 

The enantiomorph-specific SIMPEL procedure has 
been applied to two known structures in space group 
P1: (+)- 1-menthoxymethoxy-a-naphthylphenylsilane, 
C27H3402Si (MENSI) (Kanters & van Veen, 1973) 
and prostaglandin E2,  C20H320 5 (PGE2) (Edmonds 
& Duax, 1974a,b). MENSI has been solved with the 
direct method program AUDICE (Spek, 1975) in 
space group P1. PGE2 has been solved in space 
group P1 in an unconventional way, dividing the reflec- 

Table 1. Starting set defined by SIMPEL for MENSI  

h k l E (symbolic) phase 

- 2  1 1 2.81 0 
-- 1 - 6  1 2-80 0 / origin-defining reflections 
- 1  - 5  1 2.40 0 

6 - 3  3 2.40 a 
--6 7 3 2.89 b 
- 1  3 6 2.31 c 
- 2  - 6  2 2.34 d 
- 5  11 2 2.57 e 

tions and the triplets into centrosymmetric and non- 
centrosymmetric classes (Edmonds & Duax, 1974b). 

MENSL 966 triplets with E3 > 1.0, 1723 quartets 
(of which all three cross-reflections were measured) 
with E 4 > 0.6 and 377 quintets (of which all ten cross- 
reflections were measured) with E5 > 0.3 were calcu- 
lated within the group of the 200 strongest reflections. 

SIMPEL defined the starting set given in Table 1. 
With the strongest triplets and positive quartets the 

subroutines STAR TZ and SYMBAD could assign 66 
reflections a symbolic phase. In addition 31 reflections 
had more than one indication for their symbolic phase. 
The figure of merit ENQUAC was calculated for 45 = 
1024 possible solutions on the basis of all quartets with 
E4 > 0.7, 47 of which contributed to the summation. 
In all, 24 small values of ENQUAC were found, one by 
one identical, because the enantiomorph was not yet 
defined. In the calculation of ENQUIC, 67 quintets 
with a lower limit for E5 of 0.35 contributed to the 
FOM. ENQUIC did not reveal very deep minima, but 
40 of them were more pronounced than the others. 
Only four of the smallest values of both ENQUAC and 
ENQUIC were found at identical numerical values for 
the symbols, two of them being unique. These two 
solutions were refined with the enantiomorph-specific 
refinement and extension procedure, starting with the 
set of eight reflections and employing the 690 strongest 
triplets, the 1126 most reliable quartets and the 212 
most reliable quintets. The E map calculated from one 
of the two phase sets revealed a large fragment of the 
structure; the ten highest peaks yielding nine atoms and 
one spurious peak; the next 25 highest peaks contained 
11 atoms, eight spurious peaks and seven atoms of the 
enantiomorph. 

PGE2. 877 triplets with E3 > 1.0, 640 quartets (with 
three measured cross-reflections) with E4 > 1.2 
and 234 quintets (with ten measured cross-reflections) 
with E5 >0.5 were calculated within the group of the 
200 strongest reflections. The number of quartets and 
quintets, of which the E magnitudes of all cross- 
reflections are known, is small, because many reflec- 
tions were not measured. 

The starting set in Table 2 was found by SIMPEL. 
After ten cycles of symbolic addition, using the 

strongest triplets and positive quartets, 60 reflections 
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Table 2. Starting set defined by S IMPEL for  PGE2 

h k l E (symbolic) phase 

5 - 9  1 3.01 0 
5 - 10 1 2.82 0 / origin-defining reflections 
9 0 2 2.40 0 

- 1  2 1 3.18 a 
7 1 2 3.81 b 

--1 1 1 2.76 c 
7 --4 2 2.81 d 
7 4 2 2.75 e 

were symbolically phased and for 23 reflections more 
than one symbolic phase was found. 61 quartets with 
E4 > 1.2 contributed to ENQUAC. Refinement of 
the 48 lowest of the 1024 calculated ENQUAC values 
yielded 18 possible solutions. For the calculation of 
ENQUIC, 42 quintets with E5 > 0.55 could be used. 
Refinement of the 48 lowest minima yielded 17 possible 
solutions; 12 of them were approximately identical to 
possible solutions of ENQUAC. 

These 12 solutions were refined with the enantio- 
morph-specific refinement and extension procedure. 
After the refinement the ten strongest peaks in the E 
map of solution number 6 in order of ENQUAC 
(solution number 3 in order of ENQUIC, solution 
number 3 in order of ENQUAC + ENQUIC) revealed 
eight atoms and two atoms of the enantiomorph. The 
next 20 strongest peaks revealed seven atoms, seven 
atoms of the enantiomorph and six spurious peaks. 

The E map of the best solution in order of the com- 
bined ENQUAC-ENQUIC figure of merit was not 
interpretable. 

The authors thank Dr C. Stam for a critical reading 
of the manuscript. 
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Abstract Introduction 

Crystals of MoaCoSi were studied with a high- 
resolution electron microscope. Planar defects of 
different kinds were easily and frequently observed. The 
structure of one kind of defect can be derived with 
crystallograpic shear operations. 

0567-7394/79/030387-04501.00 

The principles of formation of the so-called tetra- 
hedrally close-packed alloy structures, involving diffe- 
rent crystallographic operations and intergrowth, have 
recently been described by Andersson (1978). In this 
way it is possible to describe and predict defects and a 
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